
NASA Contractor Report 198452

Numerical Investigation of Two-Phase

Flows With Charged Droplets in
Electrostatic Field

Sang-Wook Kim
Thermoscience Research Corp.
Brook Park, Ohio

February 1996

Prepared for
Lewis Research Center

Under Contract NAS3-78048-D

National Aeronautics and

Space Administration





Numerical investigation of two-phase flows with

charged droplets in electrostatic field

Sang-Wook Kim

Thermoscience Research Corp.

Brook Park, Ohio 44142

Prepared for

NASA Lewis Research Center

Under Contract C-78048-D



ABSTRACT

A numerical method to solve two-phase turbulent flows with charged droplets

in electrostatic field is presented. The ensemble-averaged Navier-Stokes equations

and the electrostatic potential equation are solved using a finite volume method.

The transitional turbulence field is described using multiple-time-scale turbulence

equations. The equations of motion of droplets are solved using a Lagrangian

particle tracking scheme, and the inter-phase momentum exchange is described by

the Particle-In-Cell scheme. The electrostatic force caused by an applied electrical

potential is calculated using the electrostatic field obtained by solving a Laplacian

equation and the force exerted by charged droplets is calculated using the

Coulombic force equation. The method is applied to solve electro-hydrodynamic

sprays. The calculated droplet velocity distributions for droplet dispersions

occurring in a stagnant surrounding are in good agreement with the measured data.

For droplet dispersions occurring in a two-phase flow, the droplet trajectories are

influenced by aerodynamic forces, the Coulombic force, and the applied

electrostatic potential field.
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NOMENCLATURE

coefficient for i- th velocity component at a grid point p

vector of body force (= {bx,br })

eddy viscosity coefficient

constant coefficient (=0.09)

diameter of a droplet

inter-phase force [Kg I(m 2 -see2)], i= {x,r}

aerodynamic force

Coulombic force

electrostatic force caused by applied electrical field

distance from meniscus to collecting surface

turbulent kinetic energy (= kp + kt)

turbulent kinetic energy in production range

turbulent kinetic energy in dissipation range

mass of a droplet

number of particles or droplets

production rate

pressure

initial guess for pressure

corrected pressure

incremental pressure

charge of a droplet

droplet Reynolds number, Ree = p[_¢- v elde /! t

radius of a droplet

external free stream velocity

initial velocity of air jet

initial guess for velocity
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predicted velocity

corrected velocity

ensemble averaged, gas phase velocity vector, _, = {_jlj=l,2} = {_,_}

velocity vector for a droplet, ve = {ue,j[i=l,2} = {u_,ve}

spatial coordinates (= {x,r})

time-step size for numerical integration

permittivity of free space

energy transfer rate

dissipation rate

electrostatic potential field

molecular viscosity

effective viscosity (=/z +/zt)

turbulent viscosity

density of gas phase

gt

Superscripts

time-level for unsteady cases

e

f

g

0

()

external boundary

continuous gas phase

liquid droplets

initial conditions

average value

Subscripts

4



1. Introduction

In electrohydrodynamic (EHD) sprays, dispersion of particles or droplets is

caused by electrical force and aerodynamic force. Application of EHD sprays can

be found in spray paintings, aerosols, fabrication of solar panels, and dust

collecting mechanisms. The use of electrical force also offers the possibility of

controlling dispersion of liquid fuel droplets in combustors and aerospace

propulsion systems. A number of experimental and theoretical investigations have

been made during past decades on two-phase flows for applications in combustors

and aerospace propulsion systems. However, only a limited amount of research

efforts have been made for two-phase flows with a charged discrete phase.

Certainly, more experimental and theoretical research efforts will be made in the

future to optimize dispersion of particles or droplets in various engineering

applications. A few experimental and theoretical works closely related to the

present work are discussed below.

Experimental data on electrostatic spray emitted from a meniscus used in the

present work can be found in ref. [1]. Subsequently, the experimental case was

studied numerically by Ganan-Calvo et ai. [2] using a Lagrangian particle tracking

technique. The charged droplets emanating from the meniscus are accelerated by

an applied electric potential and by an air jet surrounding the meniscus [3].

However, detailed data on the air jet are not available. In the work of Ganan-Calvo

et al., the aerodynamic force acting on a droplet was calculated assuming that the

surrounding air is in a stagnant state. Numerical droplets are seeded at locations

60-80 droplet radii downstream of the conical meniscus. Their calculated velocity

profiles are in good agreement with measured data. The good comparison between

the calculated results and the measured droplet velocity profiles indicates that the

influence of the airflow on the droplet motion is negligibly small. Experimental

investigations on dispersion of chemically reacting, charged droplets have also
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appeared in recent years [4]. However, detailed measured data for two-phase

turbulent flows with charged discrete phase are still very scarce.

In gas-droplet two-phase flows, inter-phase mass, momentum, and energy

exchanges exist. For the two-phase flow considered herein, the influence of

evaporation of liquid droplets on the gasphase is negligible since the time interval

that droplets are exposed to airflow is very small. Also, energy exchange is ignored

since the fluid flow is in an isothermal state. In the present numerical investigation,

the inter-phase momentum exchange is resolved using the particle-in-cell (PIC)

scheme of Crowe et al. [5]. Implementation of the PIC is described in more detail

in the "Numerical methods" section.

The numerical method used in this work is a pressure-based Navier-Stokes

equations solver that incorporates a pressure-staggered mesh and an incremental

pressure equation for the conservation of mass. The accuracy of the numerical

method has been validated by solving a number of flow cases. Calculations of two-

dimensional self-sustained oscillatory flows over a circular cylinder and a square

cylinder can be found in ref. [6], and calculations of three-dimensional lid-driven

cavity flow and a laminar flow through a curved duct can be found in ref. [7].

Further application of the numerical method for various laminar flows, complex

turbulent flows, incompressible flows, compressible flows, steady flows, unsteady

flows, and chemically reacting flows can be found in refs. [8-11] and the references

cited therein.

It has been shown that the multiple-time-scale (M-S) turbulence equations used

in this work yield accurate numerical results for various complex turbulent flows.

The numerical results for various incompressible and compressible turbulent flows

(e.g., an unsteady transitional flow over an oscillating airfoil, circular jets in

crossflow, transonic flows with shock wave - boundary layer interactions, a

confined swirling jet, and divergent channel flows) obtained using the M-S
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equations are in as good agreement with the measured data as those obtained using

optimized k-e turbulence models, algebraic Reynolds stress turbulence models

(ARSM), or Reynolds stress turbulence models (RSM) for each flow case. It has

also been shown that the M-S equations can resolve ignition delay, flame

thickness, and chemical reaction - turbulence interaction occurring in a

compressible shear layer [8]. It can be found in ref. [8] that the distribution of

chemical species obtained using the M-S equations are in much closer agreement

with the measured data than those obtained using k - e turbulence equations or a

Monte-Carlo probability density function method. The physical aspects of the M-S

equations are briefly discussed in this paper.

2. Theoretical Analysis

The mathematical equations governing an unsteady, two-phase, turbulent flows

with a charged discrete phase include: the Navier-Stokes equations, turbulence

equations, Lagrangian equations of motion for discrete phase, the Coulombic force

equation, and an electrostatic potential equation. These equations are discussed

below.

Conservation equations for gas phase flow

The electrostatic force acting on a droplet is contributed by the applied

electrostatic potential and by charged droplets. The spatial location of each charged

droplet is a function of time and, hence, a time-accurate solution technique needs to

be used to solve two-phase turbulent flows with charged droplets. The ensemble-

averaged conservation of mass equation is given as

10
+ =O. (1)

where p is the density and {_, 9} are the ensemble-averaged velocities.
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The ensemble averaged conservation of linear momentum equations in

axisymmetric coordinates are given as

--_(P_)+_(P_)+rTr

{ 0_} 10f (a_ 0_)}_ 0 2//e +- + ___7x rZlr'e Tr72 _X
+Vx (2)

7_(r_)

°;;/}l r{(-= _t,, + +- r 2/t e ---
r

op
+Fr (3)

where _ is the ensemble-averaged pressure, {F x, Fr } is the inter-phase force,

/Ze = # + #t is the effective viscosity, and # and #t are the molecular and

turbulent viscosities, respectively. A numerical procedure for the inter-phase

momentum exchange term is described later in the "Numerical methods" section.

Multiple-time-scale turbulence equations

The M-S equations are based on a simplified split-spectrum method [10]. In the

method, the turbulent kinetic energy is split into turbulent kinetic energy in the low

frequency range (kp) and that in the high frequency range (kt). Recall that the

energy-containing eddies are generated by the instability of the mean fluid flow,

the energy-containing eddies cascade to finer eddies, and the fine scale eddies are

dissipated by the viscous force. Hence, the energy containing eddies are

characterized by low frequencies and large values of kp/k t and the fine scale

eddies are characterized by higher frequencies and small values of kp/k t . The

capability to resolve the cascade is achieved by solving the convection-diffusion

equations for the spectrum-split turbulent kinetic energies. Obviously, single-time-
8



scale turbulence models can not resolve the cascade of turbulent kinetic energy

since spectrum-split turbulence quantities are not solved for in these turbulence

models [10].

In complex turbulent flows, the production rate (Pr) and dissipation rate (et) of

the turbulent kinetic energy vary widely in space so that the shape and the

frequency domain of the spectral density also vary widely in space.Such a state of

turbulence is called "nonequilibrium turbulence." The capability to resolve the

nonequilibrium turbulence phenomena originates from describing the turbulence

length scale and the turbulent viscosity using the energy transfer rate (ep). In the

M-S equations [10], the eddy viscosity coefficient that depends on the strength of

nonequilibrium turbulence is given as;

Ci.t = Claf et/e p (4)

where Cpf is a constant coefficient. A few experimental and theoretical

investigations on the dependence of the eddy viscosity coefficient on Pr]et can be

found in refs. [12-14]. In single-time-scale turbulence models, the turbulence

length scale is defined using the dissipation rate and, hence, these turbulence

models can not resolve the nonequilibrium turbulence phenomena.

Lagrangian description of droplet equations of motion

The Lagrangian equations of motion for discrete phase are given as [5, 15-17];

dxg _

-d - v (5)

dvg
m e -_ = F l (6)
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1
where

mg is the mass of a droplet, F e = 2cdPl_ - vgl(_' - ve)n:r_ + b is the sum
of

the aerodynamic force and the electrostatic force, n:re2 is the wetted area of a

droplet, and b is the electrostatic force. The drag coefficient is given as

24(1)cd = Re----_ 1 +-_ Reg 2/3 (7)

where the droplet Reynolds number is defined as

Re £ = p[ - velde
P

(8)

The body force acting on a charged droplet in electrostatic potential field is

given as

t
bj = br =-qjVO+ 4z_e$ _ Rjk

k#j

(9)

where qj is the charge of a droplet, 0 is the electrostatic potential field, N d is the

number of charged particles or droplets in the flow field, eO is the permittivity of

free space, Rjk : xj - x k and Rjk : [Rill.For the class of problems considered in

this study, the applied electrostatic field is in a steady state and the governing

partial differential equation is given as [18];

V20 =0. (10)

3 Numerical Method

The unsteady gas phase equations are solved using a finite volume method. In
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the method, the velocities and turbulence quantifies are located at the grid points

and the pressure and the electrostatic potential are located at the centroid of a cell

formed by the four adjacent velocity grid points. Interaction between the

isothermal continuous gasphase and the discrete droplet phase are accounted for

by considering the inter-phase exchanges of momentum. The transient solution for

the gasphase is obtained by solving the flow equations iteratively at each time-

level. The numerical method for the gas phase equations that include the inter-

phase source term, particle equations of motion, and the applied electrostatic

potential field are described below.

Numerical method for gas phase equations

The numerical method is a pressure based Navier-Stokes equations solver in

which the predicted velocity is obtained by solving the momentum equations and

the divergence free, corrected velocity is obtained by solving an incremental

pressure equation derived from the conservation of mass equation.

Let t_ and/5* be the initial guesses for the velocity and pressure for a new

time-level, respectively. Applying a finite volume method [6-11] to the momentum

equations yields

. * \~**

(PCI + Ai,p )tti,p

~*

nb . , ~** tgP" Av + ~n-1 * *
= _,Ai,kUi, k - PC2ui, p + Si + SFi

k=l tgxi
(11)

1 dx AV is the volume of a cell, Atf = t n - t n-1 is the
where C1 = C 2 = fAV At----_ '

time-step size, n denotes the time-level, nb is the number of neighboring grid

points, Ai, p is determined from the power-law upwind differencing scheme, S[

represents source terms contributed by non-orthogonal mesh and other velocity

components, and SFi represents the inter-phase source term. The predicted
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velocity, u.**, is obtained by solving eq. (11).

The inter-phase momentum transfer from the discrete phase toward the gas

phase is contributed by gain or loss of momentum of the discrete phase. In the

context of the PIC scheme, the inter-phase source term for the discrete momentum

equation for each cell is obtained by summing up the source terms contributed by

all the droplets inside the cell.

• 1 tt-t n+l t
SFi =_|-n I Fidxdt

At f d t=t dav

1 Nc[rt-tn+lfl
(12)

where u£, i is the droplet velocity in the i - th coordinate direction.

The predicted velocity field does not satisfy the conservation of mass until the

solutions are fully converged. The corrected velocity and pressure that satisfy the

conservation of mass and the momentum equations can be written as

_*** _** -ilu i = u i + u

p** : p* + p'J
(13)

Then the corrected discrete momentum equation can be written as

. * \~***

(pC 1 + Ai. p)ui,p

nb , _*** 0(_* + _') 1 * *

= XAi,kUi,k - AV + PC2_t_, p + S i + SFi (14)
k =1 tgxi
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The inter-phase source term is not updated during the iterative solution process of

the gas phase equations. Therefore, the time-step size of the gas phase for two-

phase unsteady flows needs to be much smaller than that for single phase unsteady

flows. Otherwise, the inter-phase momentum transfer may not be resolved

accurately. Subtracting eq. (11) from eq. (14) yields the relationship between the

incremental velocity and the incremental pressure given as

-' -A-0_' (15)
Ui = ui--_

where Aui = AV/(pCl + A_p), and the contributions made by neighboring grid

points have been disregarded. However, this simplification does not incur any mass

imbalance in the converged solution since the incremental pressure is driven only

by the mass imbalance as shown below.

The incremental pressure equation is obtained by inserting eq. (13) into eq. (1)

and is given as, after some rearrangement,

0 0 '
ffx (pAu--_) rl ffr (rpAv _r t=-(-_-(PFt** ) l tg l+r-_rpv-**)t (16)

where the fight hand side represents the mass imbalance and is identical to the

original conservation of mass equation. Therefore, the incremental pressure is

driven only by the mass imbalance and the simplifications introduced during

derivation of the incremental pressure equation do not incur any mass imbalance in

the converged solution.

Applying the finite volume method to eq. (16) yields

nb r , **

Apt'p= _Ak_'k-_" fi _j njds (17)
k=l
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where ds is the boundary surface of a pressure control volume. The incremental

pressure is obtained by solving eq. (17), the incremental velocity is calculated

using eq. (15), and the corrected velocity and pressure are calculated using eq. (13).

The turbulence equations are solved by the same finite volume method. At each

time-level, the conservation of momentum equation, the incremental pressure

equation, and the turbulence equations are solved iteratively until the velocity and

pressure satisfy the prescribed convergence criterion. In principle, the incremental

pressure equation needs to be solved iteratively until the residual term vanishes

and, in such a case, the converged solution satisfies the conservation of mass and

momentum equations exactly within the context of the difference approximation.

Particle Equations of Motion

The particle equations of motion are integrated using the Crank-Nicholson

scheme. Let At e be the time-step size for the discrete phase. Then eqs. (5) and (6)

can be written as;

x_ -x_ -1 1 vn+l/2
At e =_ e

(18)

me v_ - v_ -1 1 Fn+l/2
At e = _ e (19)

Eqs. (18) and (19) form a set of nonlinear equations since F e depends on the

droplet velocity as well as the gas-phase velocity that is a function of the spatial

location. Ideally, eqs. (18) and (19) needs to be solved iteratively. Instead, a very

small time-step size can be used to semi-implicitly integrate eqs. (18) and (19). The

particle velocity and the force on the right hand side of eqs. (18) and (19) are

calculated using
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(2O)

where v_ and F_ are evaluated using an explicit time-integration scheme. In gas-

liquid two-phase flows, the physical time-scales as well as the numerically stable

time-step-sizes for the continuous and the discrete phases are quite different. The

use of a very small time-step size is necessary to accurately resolve the inter-phase

momentum transfer. A very small time-step size also needs to be used for

numerical stability. The use of a time-step size approximately two orders of

magnitude smaller than that of the continuous phase yields stable and strongly

convergent results. A similar conclusion can also be found in Raju and Sirignano

[17].

The electrostatic force acting on a charged droplet is caused by the applied

electrostatic potential field and by the Coulombic force acting among charged

droplets. The force exerted by the applied electrical field is calculated using the

electrical potential field obtained by solving a Laplacian equation. In numerical

calculation, the electrical potential is defined at the center of a cell and the

Laplacian equation is solved using the same procedure as that for the incremental

pressure equation [6-11 ]. The force exerted by charged droplets is calculated

directly using the Coulombic force equation.

The liquid spray is represented by a finite number of droplets with different size

groups. Let eh'e, k be the mass flow rate of the droplets in the k- th size group.

Then the total mass flow rate, 9_/e, of the droplets is given as

Me = e e, k (21)
k=l
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where

of the physical droplets in the k - th size group is given as

Me,k
flk - _ _rpere,k3

Nsi z represents the number of all droplet size groups. The number flow rate

(22)

The number of physical droplets for each size group to be introduced at each time-

level of the discrete phase is given as

N_ : flkAt< + Resid(N_ -1) (23)

where At e is the time-step size for the discrete phase, and Resid(N_-l) is the

residual carried over from the previous time-level of droplet injection.

The charge carded by each droplet is calculated using

qj = _ de )
(24)

m

where d e is the average diameter of the droplets. The charge carried by an average

size droplet, _, is obtained by dividing the measured total current by the number

flow rate of average-sized droplets. According to the experimental work of Gomez

and Tang [19], tx -- 2 for d e smaller than approximately 50/3m, and tr - 1.5 for

substantially larger droplets. Theoretical investigations on charge-to-mass ratio

show that tx = 1.5 [20]. In the present work, a - 1.5 is used following the work of

Ganan-Calvo et al. [2].

o Results

Two different cases of droplet dispersion are considered herein. In the first case,
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calculations are made for dispersions of charged droplets occurring in a stagnant

surrounding and the results are compared with available numerical results and

measured data [1,2]. In the second case, dispersion of charged droplets coupled

with fluid flow is calculated and the capability of the numerical method to solve

droplet or particle dispersions occurring in laminar and turbulent flows is

demonstrated. The calculated results are analyzed to investigate the trajectory of a

droplet and the forces acting on the droplet. Physical data used in both calculations

are described below.

The electrostatic spray emanating from a meniscus and the extent of the

computational domain are shown schematically in Fig. 1. The length of the needle

is 0.028 m, the inner radius (h) is 0.00025 m, and the outer radius is 0.00050 m.

The distance between the meniscus and the collecting surface (H) is 0.0254 m.

The other physical dimensions of the computational domain are: a = 0.014 m,

b = 1.24H, c = H, and d = 0.95H. The applied electric potential difference is 3040

volts, and the current carried by charged droplets is 4.3 x 10 -8 Ampere. The liquid

is heptane doped with an antistatic additive (STADIS 450, Du Pont). The liquid

density is 685 Kg/m 3, and the volumetric flow rate is 2.3 x 10 -9 ma/sec. The

measured data show that droplet diameters are distributed in between 35 - 50/zm

[2]. In the present work, the spray is represented by 5 different size groups with the

diameters distributed between d_ - O'sd_ and de + O'sd_, where d-"e = 40 //m is the

mean diameter and crs = 0.20 is the standard deviation. The number flow rate of

each size droplet is calculated using the Gaussian distribution. In this case, the

charge carried by an average-sized droplet is 6.26 x 10 -13 Coul. The velocity of the

liquid spray leaving the needle is 0.012 m/see. The droplets are accelerated by the

applied electric potential and by an air jet surrounding the needle [3]. However,

detailed data for the air jet are not available. The annulus of the air jet is assumed

to be 0.00025 m as shown in Fig. 1.
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Dispersion of droplets in stagnant surrounding

The electrostatic spray emanating from a conical meniscus considered herein

can be found in refs. [1,2]. Following the previous work [2], it is assumed that the

airflow is negligibly small. The mesh for the entire domain and that near the

injector are shown in Fig. 2.(a) and Fig. 2.(b), respectively. The smallest mesh size

is 0.5 x 10-4m and the mesh away from the injector is stretched by a factor of 1.25.

Note that the radius of the liquid injector is 0.25 × 10-3m while that for the

collector surface is 0.254 × 10 -lm. The length scale of the injector is two orders of

magnitude smaller than that of the entire domain as well as the droplet collector

surface. The use of such a large stretch ratio is necessary to discretize a

computational domain characterized by largely disparate length scales.

The boundary conditions for the electrical potential field are: _ = 3040 volts for

the meniscus, _ = 0 along the surface of the droplet collector, and 3_/3n = 0 along

the center line and the entire external boundary. The air jet and air duct are treated

as a free space so that the calculated potential field can be compared directly with

the analytical and numerical results presented in ref. [2].

The calculated electrical potential field is shown in Fig. 3(a). The potential

along the centerline obtained in the present study is in good comparison with

analytical and numerical results [2] as shown in Fig. 3(b). The good comparison

indicates that the present numerical method can resolve the highly steep and almost

singular potential field near the meniscus. The calculated lines of force and the

magnitude of force are shown in Figs. 3(c) and 3(d), respectively. Fig. 3(d) also

shows that a strong electrical force field is concentrated in the region very close to

the conical meniscus.

The number flow rate of average-sized droplets is calculated by dividing the

volumetric flow rate of the conducting liquid by the volume of an average-sized
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droplet, and the charge carded by an average-sized droplet is obtained by dividing

the current by the number flow rate. Thus the number flow rate is inversely

proportional to the cubic power of the droplet diameter, while the charge carded by

an average-sized droplet is proportional to the cubic power of the diameter. The

lines of force are closely aligned with the centerline in the spray region. Hence, the

lateral dispersion of droplets is mostly caused by the Coulombic force acting

among charged droplets and, hence, the calculated droplet dispersion in the radial

direction depends strongly on the average droplet size. A few trial calculations

revealed that the droplet dispersion also depends strongly on the mode of

numerical droplet injection. The cause for such a dependence is discussed in the

following "Two-phase flow with charged droplets" section. For the reasons

discussed above, small uncertainties in measured current, volumetric flow rate, and

the average droplet size can produce significantly different numerical results. To

reduce uncertainty, the numerical droplets are seededat x = 0.012 m in the present

calculation. The lateral seed location is obtained using a random number generator,

and the initial droplet velocity is obtained from measured data at the seed location.

The time-step size for numerical integration of droplet equations of motion is

At e = Atf/100, where Atf = 0.175 x 10 -4 sec is the time-step size for the gas

phase to be discussed in the following section. Calculations were also made using

At e = Atf /200 to confirm the independence of the calculated results on the time-

step size. The numerical results obtained using two different time-step sizes are

practically identical. The initial droplet velocities and the calculated results at

downstream locations are shown in Fig. 4. It can be found in the figure that the

droplet velocity profiles obtained in the present study are in good agreement with

the measured data. However, the present results exhibit wider later dispersion of

droplets than those of ref. [2], and a few droplets disperse beyond r = 0.01 m.
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Two-phase flow with charged droplets

The inlet boundary of the air jet is located at the tip of the meniscus. The initial

velocity of the air jet is 22 m / sec along the 45-degree inclined meniscus surface.

The mesh and the applied electrical potential are the same as those described in the

"Dispersion of droplets in stagnant surrounding" section. The time-step size for the

fluid flow is Atf = Tc/N t , where Tc = 0.0035 sec is a characteristic time for a

droplet to reach the surface of the collector and N t = 200 is the number of time-

steps per characteristic time. The boundary conditions are as follows. At the

upstream boundary above the air duct, u = Ue, v = 0, and a weak turbulence field

is prescribed. Along the inclined surface of the liquid jet, the axial velocity of air

is set equal to the liquid injection velocity, and v = kp = kt = 0 and

3tp/3n = 3tt/3n = 0. Along the center line and at the exit boundary, v = 0 and a

vanishing gradient boundary condition is used for all other variables. At the

external far field boundary, u = U e, v = 0, and a vanishing gradient boundary

condition is used for all other variables. Along the solid wall boundary of the

droplet collecting surface, u = v = kp = k t = 0 and O_Sp /o_n = o_Et /o_ = 0. External

far fields are in a stagnant state in many EHD sprays. For the two-phase flow case

considered in this section, more than 90 per cent of the domain is in a stagnant

state. A stagnant state is certainly a trivial solution of the Navier-Stokes equations.

However, numerically resolving such a stagnant state that extends through a large

portion of the flow domain is not a trivial matter. To overcome numerical

instability caused by the no fluid motion in a large extent of the domain, a small

amount of free stream velocity, U e = 0.035Uo, has been used. Since the fluid flow

and the particle dispersion occur in a small region along the center line, the

external velocity does not significantly alter the two-phase fluid flow. Developing

a numerical method to solve fluid flow occurring in a very small region of a large

stagnant surrounding is a formidable task and it will be reported separately.
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The calculated velocity vectors, pressure contours, and the turbulent kinetic

energy contours for the gas-phase flow are shown in Figs. 5(a)-5(c), respectively.

These figures show that a significant fluid motion occurs only in a narrow region

along the center line. A very weak turbulence field is developed only along the air

jet and the entire domain, including the center region, remains in a practically

laminar state.

The convergence history for velocities, pressure, and conservation of mass is

shown in Fig. 6(a) and that for turbulence variables is shown in Fig. 6(b). The L2

error norm for each flow variable is defined as

Ile(a)l= k i=2 ny-l{( new _ aol.d)/_}2/_(_, ai,j l,j n x - 2)(ny
j=2

(25)

where n x and ny are the number of grid points in the axial and radial directions,

respectively, and a = max{a_,_wli= 2,n x -1 and j= 2,ny -1} is a normalizing

factor. The global conservation of mass error is defined as

lecMl=(min -mout)/mi,, (26)

where thin and thou t represent mass fluxes entering and leaving the domain,

respectively. The small external velocity does not completely suppress the velocity

and pressure wiggles. Yet, the present numerical method yields strongly

convergent results as shown in these figures. It is shown in Fig. 6(b) that the

multiple-time-scale turbulence equations yield strongly converged results for the

weak turbulence field developing in a flow field with largely disparate length

scales. The capability of the turbulence equations to accurately resolve complex

transitional turbulence field can be found in ref. [11].
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The droplets are seededinto the flow field after the flow field has reached a

converged state. The droplet seed location confined within

{(x, y) 10.0035 < x < 0.0042, 0. < y < 0.0007} is calculated using a random number

generator and the initial velocity of droplets is 5 m / see. As in the previous section,

the use of At e = Atf/100 yields numerical results that are independent of the time-

step size. The calculated streaklines are shown in Fig. 7. The convergence history

for flow and turbulence variables are shown in Figs. 8(a) and 8(b), respectively.

The number of droplets residing in the flow field versus time-level is shown in Fig.

8(c). As a steady state is approached, approximately 290 droplets exist in the flow

field. For the two-phase flow case, the inter-phase momentum source term

contributed by the discrete phase continuously disturbs the velocity field of the gas

phase. To prevent accumulation of errors, the flow equations are solved iteratively

for at least a prescribed number of iterations at each time-level. As shown in Figs

8(a) and 8(b), the use of 5 iterations per time-level let the flow and turbulence

variables stay within a consistently converged state. After the prescribed minimum

number of iterations is performed, calculations advance to a new time-level if

either a prescribed convergence criterion is met or the number of iterations exceeds

the prescribed maximum number of iterations. The convergence criterion used is

lecM[< 1.0 × 10 -3 and the maximum number of iterations is 25 per time-level.

The trajectory and velocity components of a droplet are shown in Fig. 9(a), and

the axial and radial forces acting on the droplet are shown in Figs. 9(b) and 9(c),

respectively. Immediately after the droplet is seeded, it is accelerated by the

applied electrostatic force and aerodynamic force. Once the droplet attains its peak

velocity, the aerodynamic force begins to decelerate the droplet. It can be found in

Fig. 9(c) that the lateral dispersion of droplets is mostly caused by the Coulombic

force. When a droplet is seeded at a relatively remote location from other droplets,

the Coulombic force acting on the droplet is small. However, as soon as a new
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droplet is seeded at a close location, the Coulombic force acting on the droplet is

increased instantly. The dependence of droplet dispersion on the mode of

numerical droplet seeding is caused by this phenomenon. As the particle travels

toward the downstream direction, the Coulombic force becomes negligibly small

due to the dispersion of droplets. At such downstream locations, a droplet can

attain an equilibrium velocity that is balanced by the applied electrostatic force and

the drag force.

5. Conclusions and discussion

A time-accurate numerical method to solve two-phase turbulent flows with

charged particles or droplets in electrostatic field is presented. The method can

solve dispersions of a discrete phase occurring in a stagnant surrounding, in

laminar flows, and in turbulent flows. Therefore, the method can be used to

investigate the dispersion of a charged discrete phase encountered in various

engineering applications. The capability to analyze atomization of electrically

conducting liquids is not included in this study. Atomization is an important, on-

going, research subject by itself even for liquids that do not involve electrical force.

The present method can be used advantageously for numerical investigation of

such problems as spray painting and dust collecting mechanisms that do not

involve atomization of electrically conducting liquids. For problems that involve

atomization, such as aerosols, fabrication of solar panels, and the problem

considered in the present study, the method provides limited capability to study

dispersion of droplets that involve electrical force.

For the droplet dispersion occurring in a stagnant surrounding, the calculated

droplet velocity profiles are in good agreement with the measured data. The

calculated results obtained in the present study exhibit wider lateral dispersion than

that obtained by Ganan-Calvo et al. [2]. The lateral dispersion is mostly caused by
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the Coulombic force acting among charged droplets. It is shown that the

Coulombic force depends strongly on the charge carded by each droplet and the

mode of numerical droplet injection. In ref. [2] and here, the charge carded by an

average-sized droplet is calculated by dividing the current by the number flow rate

of droplets. The number flow rate is inversely proportional to the cubic power of

the average droplet diameter. Hence a small uncertainty in the measured droplet

size, current, and volumetric flow rate can cause a substantial difference in

calculated results.

For the flow case considered in this study, a large extent of the domain is in a

nearly stagnant state. It is found that the large stagnant surrounding causes

numerical instability. Introducing a small external velocity suppresses the

numerical instability and yields strongly convergent and physically correct results.

A weak turbulence field is developed only near the exit of the air jet and the entire

flow field remains in an almost laminar state. It is shown that the multiple-time-

scale turbulence equations do not cause difficulty in obtaining a highly convergent

result. In fact, the turbulence equations yield strongly converged results for the

weak turbulence field developing in a flow field with largely disparate length

scales. Comparisons of the aerodynamic force, electrostatic force caused by the

applied electrical field, and the Coulombic force acting on a charged droplet help

to better understand the characteristics of dispersion of charged particles or

droplets occurring in two-phase flows. Measured data for two-phase flows with a

charged discrete phase are very scarce, and more detailed measured data are

certainly necessary for further improvement and verification of numerical methods

to solve two-phase flows with a charged discrete phase.

A few difficulties in numerical simulations of two-phase flows with a charged

discrete phase are discussed below. Usually, the time-step size of the discrete phase

in two-phase flows needs to be by far smaller than that for the gasphase in order to
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obtain numerical results that are independent of the time-step size used. Otherwise,

the inter-phase momentum transfer may not be resolved correctly. The time-step

size of the discrete phase for two-phase flows with charged droplets needs to be

even smaller than that without Coulombic force, ff the time-step size for the

discrete phase is not sufficiently small, then droplets can approach infinitely close

to each other and these droplets may be subjected to a large Coulomb force since

the Coulomb force between charged droplets is inversely proportional to the square

of the distance between the droplets. In such a case, a large Coulomb force

accelerates droplets so greatly that an unphysically large inter-phase momentum

transfer rate can be produced and the numerical method for the gas-phase may fail

to yield a converged solution. Only the use of a very small time-step size can yield

a physically correct droplet distribution pattern.
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(c) turbulent kinetic energy contours,0 < k < 8 m 2/sec 2, Ak = 0.8.

Figure 5 - continued.
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